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Abstract—2-Methyl-3-(nitrooxymethyl)-[1,4]-naphthoquinone and 2-(nitrooxymethyl)-[9,10]-anthraquinone, the first representa-
tives of quinone-derived organic nitrates, potential hybrid drugs, were obtained and characterized through X-ray diffraction.
Voltammetric studies showed that reductive elimination occurs, after quinone reduction. The NO3

− release, leading to electrogen-
erated quinonemethide, would suggest a quinone-driven biological activity. © 2002 Elsevier Science Ltd. All rights reserved.

Organic nitrates are recognised as being able to relax
vascular smooth muscle and represent the oldest class
of NO donors that have been clinically applied.1,2 NO
is currently one of the most studied molecules in the
biomedical sciences. This interest is driven by the multi-
plicity of roles that NO2,3 plays. The NO release from
organic nitrates requires either enzymatic or nonenzy-
matic bioactivation where a three-electron reduction
thiol-dependent is involved (Scheme 1).4 The biochemi-
cal mechanism of NO release from organic nitrates has
not been fully defined.4 Nitrosothiol formation and
enzymatic conversion have been considered to explain
the formation of nitric oxide from nitrates.2,5 Specific
thiols, for example, cysteine, interact with nitrates to
give nitrites and NO in sequence.2 Evaluation of NO
release is possible through the measurement of NO2

−,
by the use of the Griess reaction.6

Additionally, numerous quinones play vital roles in the
biochemistry of living cells and exert biological activi-
ties.7 As the nitrate is a good leaving group, those
quinones can alternatively generate quinonemethides
after reduction8 and eventually behave as bioreductive
alkylating reagents.9

As seen, both processes, NO release or quinonemethide
generation, would depend on a preliminary reduction.
As such, one additional goal of the present work is to
use electrochemical methods (cyclic voltammetry) to
obtain information about the reduction behaviour of
those hybrid compounds. Comparison of electrochemi-
cal data with results from in vitro released-NO2

− quan-
tification methods would be valuable and in case of a
positive correlation, add value for the use of electro-
chemical methods as tools in the field of NO chemistry,
apart from analytical determinations.10

In general, organic nitrates can be readily prepared
from the esterification of the corresponding alcohols
with nitric acid, in the presence of sulphuric acid, or by
substitution between reactive alkyl halides and
AgNO3.11

In the present case, 2-methyl-3-(nitrooxymethyl)-[1,4]-
naphthoquinone (1) and 2-nitrooxymethyl-[9,10]-
anthraquinone (2) were prepared from the
corresponding bromides through AgNO3 displacement
reactions.12 Light yellow crystals suitable for X-ray
analysis were obtained from 1 from a solution of
hexane:ethylacetate (9:1). Compound 2 was prepared

Scheme 1. Probable in vivo pathways of NO liberation from
organic nitrates.4 GST (glutathione transferase), GSH
(reduced glutathione), GSSG (oxidized glutathione).
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Figure 1. ORTEP3 view of 1 showing C�H···O interactions.

Figure 2. ORTEP3 view of 2 showing C�H···O interactions.

with a similar procedure. Light yellow crystals were
obtained after silica gel chromatography, using 1:1
hexane:CH2Cl2.12

The single-crystal X-ray diffraction study of 1 and 2,
together with physical–chemical data analysis12 allowed
the structure elucidation.15 ORTEP3 views of the
molecular structures and the adopted numbering
scheme are shown in Figs. 1 and 2.

The molecules are held together through van der Waals
interactions, additionally there are three C�H···O weak
hydrogen bondings for 1 and four hydrogen bondings
for 2: O4···H6C=2.77 A� ; C6C�H6C···O4=124.8°(2);
O3···H8A=2.48 A� ; C8A�H8A···O3=144.6°(2);
O5···H7B=2.58 A� ; C7�H7B···O5=155.6°(2) for 1 and
O4···H1=2.51 A� ; C1�H1···O4=151.2°(2); O5···H5=
2.52 A� ; C5�H5···O5=151.4°(2); O3···H4=2.67 A� ;
C4�H4···O3=155.3°(2); O2···H8=2.69 A� ;
C8�H8···O2=159.4°(2) for 2, as shown in Figs. 1 and 2.

Compounds 1 and 2 have two reduction-activated phar-
macophoric groups4,7 as well as two electroactive
groups.16,17 The electrochemistry of quinones have been
extensively reviewed16 while for organic nitrates, the
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information about electrochemical redox processes are
quite scarce.17 Such esters are reduced in a pH indepen-
dent two-electron wave to nitrite ion and alcohol.17,18

R�O�NO2+2e−�RO−+NO2
−

In organic medium, benzyl nitrate is reduced and the
formed anion radical loses nitrite.17

The Griess reaction is largely used for determination of
NO release through spectroscopic quantification of
nitrite ion.6

In this work, 1 and 2 were assayed through Griess
reactions,19 in the presence and absence of cysteine, and
submitted to cyclic voltammetry20 experiments, in
aprotic medium, in order to verify eventual release of
NO2

− and to study the electrochemical reduction pro-
cess, respectively, to observe similarity or complemen-
tarity between the two methods. When considering such
mechanisms, some questions arise, in particular, which
group is more easily reduced, which are the structure’

modifications after uptake of an electron and how
many electrons can be transferred.

Compounds 1 and 2 do not release NO2
−.19

Electrochemical studies, cyclic voltammetry20 and elec-
trolysis,22 were performed in aprotic medium20–22 and
the unsubstituted quinones 2,3-dimethyl-1,4-naphtho-
quinone (3) and 2-methyl-9,10-anthracenedione (4)
were used as standards. Compounds 3 and 4 showed
behavior typical of quinones in aprotic medium. They
are reduced in two pairs of diffusion-controlled peaks
(Ip��1/2) corresponding to two sequential reversible
and quasi-reversible one-electron transfer processes.
EpIc and EpIIc were, for 3, −0.838 and −1.393 V and, for
4, −0.949 and −1.502 V (�=0.100 V s−1) furnishing their
radical anions and dianions, respectively (Figs. 3 and
4). The presence of the nitrooxy group in the allylic (1)
and benzylic (2) positions modifies drastically the volta-
mogramms, with the observation of at least six waves
for 1 (Fig. 3). The first cathodic wave (EpIc=−0.428 V)
has no anodic counterpart and, compared to the unsub-
stituted quinone 3, suffers an intense anodic shift
(�EpIc=0.410 V). The EpIc dependence on � (�EpIc/
� log �=36 mV) is indicative of an EC mechanism
(electronic transfer with a coupled chemical reaction),
probably an electronic transfer to the quinonoid group
followed by the cleavage of C�ONO2 bonding, releasing
NO3

−.

The quinonoid radical, generated after cleavage, can
suffer dimerization, furnishing dimer 523 or a second
electron transfer, leading to the anion that can be
protonated by trace amounts of residual water in the
supporting electrolyte to give 2,3-dimethyl-1,4-naphtho-
quinone (3) (Scheme 2), both products prone to suffer
additional reductions at EpIIc and EpIIIc at potentials
close to EpIc of 3 (Fig. 3). Additional waves suggest
further reductions of the anion-radicals formed (EpIVc).
Waves Vc and shoulders are probably related to the
resulting electrogenerated quinone methide and its reac-
tion giving electroreducible dimers. Those are not
examined in the present paper and complete electro-
chemical study will be published elsewhere. Electrolysis
held at potential close to the first wave22 (Eapp=−0.5 V)
led to the consumption of 1 mol electrons mol−1 and
after workup furnished a complex mixture, where the
presence of nitrate anion, 3 and 5 was evident.22

Concerning 2, the first reduction wave has also an
irreversible nature (no anodic counterpart) and occurs
at EpIc=−0.764 V, higher than the one for the standard
4 (�EpIc=0.185 V). Its height (IpIc) is similar to the first
wave of 4, being related then to the transfer of one
electron, as also proved by controlled potential electroly-
sis.22 In addition, waves IIc and IVc with a more
reversible character and similar heights were observed
and are also related to successive monoelectronic trans-
fers. IIc (EpIIc=−0.987 V) is close to the first reduction
wave of 4 (EpIc=−0.949 V); while IVc is shifted to more
negative potentials (EpIVc=−1.580 V). Except for the
first wave, the cyclic voltammogram follows the typical

Figure 3. Cyclic voltammogram of (–––) 1 and (…..) 3. Hg
electrode. DMF/TBAP 0.1 mol L−1. �=0.100 V s−1.

Figure 4. Cyclic voltammogram of (–––) 2 and (…..) 4. Hg
electrode. DMF/TBAP 0.1 mol L−1. �=0.100 V s−1.
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Scheme 2. Probable pathway for the reduction of 1.

behavior of quinones.16,21 Electrolysis held at the first
wave (Eapp=−0.800 V)22 furnished the original quinone
4 as the major product after consumption of 1 mol
electrons mol−1, as reported for acetate-derived
anthraquinones.24 Electrochemical studies of both
nitrooxy-derived quinones showed that reductive cleav-
age occurs, with release of the nitrate anion, instead of
nitrite anion, which corroborate results obtained from
Griess reaction.

In summary, two new organic nitrates were synthesized
and properly identified, using spectroscopic and X-ray
diffraction methods. They belong to a class of bifunc-
tional compounds not yet investigated from the biolog-
ical point of view.

They are promising biologically active compounds and
can belong to the class of ‘hybrid drugs’, that combine
different pharmacophoric groups in a single molecule.25

The use of hybrids could solve pharmacokinetic prob-
lems and replace the use of mixture of drugs.25

Voltammetric studies showed that reductive elimination
occurs, after quinone reduction. The NO3

− instead of
NO2

− release, leading to electrogenerated quinoneme-
thide, would suggest a quinone-driven biological activ-
ity, more than a NO donor characteristic.
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